
Sr. No.	Category	Course Code	Course Name	L	Т	P	Hrs	Cr	MSE/LA1	ISE/LA2	ESE	Ext
			Professional Core (T	heory)							
01	PCC	1AI201	Searches & Logics in AI	3	0	0	3	3	30	20	50	
02	PCC	1AI202	Computer Architecture & Networking	3	0	0	3	3	30	20	50	
03	PCC	1AI203	Data Structures and Algorithms	3	0	0	3	3	30	20	50	
04	PCC	1AI204	Discrete Mathematics	3	0	0	3	3	30	20	50	
			Professional Core ((Lab)								
05	PCC	1AI251	Searches & Logics Lab	0	0	2	2	1	30	30	40	POE
06	PCC	1AI252	Data Structures Lab	0	0	2	2	1	30	30	40	POE
07	PCC	1AI253	Object Oriented Programming Lab	1	0	2	3	2	30	30	40	POE
			Mandatory (Course	es							
08	VEC	7VE201	Value Education	2	0	0	2	2	30	30	40	
09	AEC	7EE201	Understanding Incubation and Entrepreneurship (NPTEL)	3	0	0	3	3				
10	CEP/FP	7CEAI201	Project Management and Technical Writing	1	0	0	1	1	30	20	50	
	· ·		Total	19	0	6	25	22				1

Sr. No.	Category	Course Code	Course Name	L	T	P	Hrs	Cr	MSE/LA1	ISE/LA2	ESE	Ext
			Professional Core (T	heory)							
01	PCC	1AI221	Decision Modeling using AI	3	0	0	3	3	30	20	50	
02	PCC	1AI222	Mathematical Foundation For AI	3	0	0	3	3	30	20	50	
03	PCC	1AI223	Operating System	3	0	0	3	3	30	20	50	
04	PCC	1AI224	Computational Algorithms	3	0	0	3	3	30	20	50	
			Professional Core (Lab)								
05	PCC	1AI271	Python Programming Lab	1	0	2	3	2	30	30	40	
06	PCC	1AI272	Decision Modeling Lab	0	0	2	2	1	30	30	40	POE
			Multi-Disciplinary I	Minor	(MDI	M)						
07	MDM	Refer List	MDM	3	0	0	3	3	30	20	50	
			Mandatory (Course	s							
08	VSEC	1VSAI245	Frontend Technologies	0	0	2	2	1	30	30	40	OE
09	EEM	2	0	0	2	2	30	20	50			
10	2	0	0	2	2	30	20	50				
		20	0	6	26	23			-			

	Wa	Ichand Col	llege of En									
		(Governmen	AY 2025-2		(1)							
		С	ourse Inform	ation								
Progran	nme	B.Tech. (Artif	ficial intellige	nce and Mac	hine Learning)							
Class, S	emester	Second Year	B. Tech., Sem	III/IV								
Course	Code	1AI201										
Course	Name	Searches and	l Logics in A	[
Desired	Requisites:	Mathematical	l Reasoning ar	nd Proofs								
Teac	ching Scheme		Exam	ination Sch	eme (Marks)							
Lecture	3 Hrs/week	ISE	MSE	ESE		Total						
Tutoria	I	20	30	50		100						
				Credits	3:3							
			Course Objec									
1	Understand and											
2	Explore search a											
3	Develop logical agents capable of automated reasoning and decision-making in AI systems.											
	Course Outcomes (CO) with Bloom's Taxonomy Level											
At the en	nd of the course, the students will be able to,											
СО	Course Outcome Statement/s Bloom's Taxonomy Level Descriptor											
					Level							
CO1	Understand and Explain Local Search Algorithms 2 Understand											
CO2												
CO3	Apply Search Tech Problems	hniques to Solv	ve Optimizatio	on	3	A	pply					
CO4	Analyze different				4	Ana	llysing					
Module			Module Cont	ents			Hours					
I	Techniques, Loc Search in Parti Unknown Enviro	Local Search al Search in Cally Observationments	n and Optim Continuous Spa ble Environm	aces & Non	lvanced Local S Deterministic A e Search Agent	ctions,	6					
II	Game Theory and Search in Games: Introduction to Game Theory, Optimal Decisions in Games, Alpha-Beta Pruning and Move Ordering, Heuristic Alpha-Beta Tree Search, Monte Carlo Tree Search (MCTS) & Stochastic Games, Partially Observable Games, Limitations of Game Search Algorithms											
III	Constraint Sati Introduction to Backtracking So Problems, Appli	sfaction Problem CSPs, Contearch for CSI cations	lems (CSPs): astraint Propa Ps, Local Sea	•	Inference in SPs, The Struct		6					
IV	Logical Agents and Propositional Logic: Knowledge-Based Agents ,Propositional Logic :Syntax, Semantics, Propositional Theorem Proving, Effective Propositional Model Checking: Complete backtracking algorithm, Local search algorithms , Agents Based on Propositional Logic: Hybrid agent model, Making plans using propositional											

	infer	ence												
	First	-Ord	er Log	gic (FC	L) an	d Infe	erence	e:						
V	and Infer	queri ence icatio	es, Ki in F	inship irst-Or	doma der L	in, N ogic	umbe : Pro	rs, S posit	ets, Li ional	irst-Ord ists, Th vs. Fir Chaini	e Wu st-Ord	mpus V er Infe	World, rence,	7
			ge Rep	resent	tation	and I	Reaso	ning:						
	Onto	Ontological Engineering, Categories and Objects : Physical composition, Events												
VI		and Time Representation: Fluents and Objects, Mental Objects and Modal												
		Logic, Reasoning Systems for Categories: Semantic Networks, Description												
	Logics													
						7	Γextb	ooks						
1				d P. No	_	-	ial In	tellige	ence: A	Moder	п Аррі	roach, 3	rd/4th ed	l.,
						F	Refere	ences						
1	I			Norvi /2021.	g, Arti	ficial	Intelli	genc	e: A M	odern A	pproa	ch, 3rd/	4th ed., F	Pearson
2	R. Br	achm		d H. Le	vesque	e, Kno	owled	ge Re	presen	itation a	nd Rea	asoning	, 1st ed.,	Morgan
						U	seful	Link	S					
1	https	:://npt	el.ac.i	n/cou	rses/10	06102	2220/							
2	https	s://npt	el.ac.i	n/cou	rses/10	06105	5470/							
	'					CO-	PO M	Iapp i	ing					
	Programme Outcomes (PO)											P	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2			2			1	1				3	2
CO2	3	3	3		3	2		2					2	3
CO3	3	3	3	3	3		2				2	1	3	3
CO4		3	3	3			2	2	3	3			3	3

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Note: Self-study content should be provided module wise and assessment should be carried by course faculty at the time of ISE, MSE, ESE.

	Wa		_	Engineering,	_					
		(Govern	nment Aided A AY 20	autonomous Institute)						
			Course Inf							
Progra	mme	R Tach (A		lligence and Machin	na Lagrning)					
	Semester	-	ear B. Tech.,		ne Learning)					
Course		1AI202	Cai D. ICCII.,	Sem v/vi						
	e Name		Architecture	e & Networking						
	d Requisites:									
Tea	aching Scheme		E	xamination Schem	ne (Marks)					
Lectur		ISE	MSE	ESE		otal				
Tutori		20	30	50		100				
				Credits: 3						
		<u>'</u>	Course O	bjectives						
1	Introduce the bas	ic compon	ents of a co	mputer system						
2	Explore the con	ncepts of	memory h	nierarchy, multi-c	core processi	ing, and	cache			
	optimization tech	niques								
3				ocols, and technolo		systems				
	Cour	rse Outcon	nes (CO) with	n Bloom's Taxonoi	my Level					
At the	end of the course, the	e students v	vill be able to),						
CO	Cou	irca Outcoi	me Statemer	nt/s	Bloom's		om's			
	Cot	ii se Outcoi	ine Statemen	10/5	Taxonomy Level		nomy riptor			
CO1	Comprehend the instruction set	architectu	ire of CPU	J, memory and	II		standing			
CO2	Study the integra	_	arallel proce	essing, multi-core	IV	Anal	lysing			
CO3	Explain concepts topologies, and pro			models, network	IV	Anal	lysing			
CO4	Analyze impact of in deployment, ope	_			IV	Anal	lysing			
Modu	le		Module	Contents			Hours			
I		o Compu d limitation	ter Architens for large	s cture, CPU Arc workloads, Instruc A AI model training	ction Cycle, N	ructure, Memory	7			
	Pipelining, Acc	•	-		with the CF	PU. Bus				
II	Instruction pipelining, I/O devices: Types and interfacing with the CPU, Bus systems: Data, address, and control buses, Specialized hardware accelerators: 7 TPUs, NPUs, FPGAs for AI, Interrupts: Types, Interrupt handling in AI systems,									
			-		_	systems,				
	Parallel Processi			vs. CISC architectur	res					
III		_		f Parallelism, Multi-	Core Architectu	ıre, GPU	6			
			• • •	sing, GPUs, and Mult						
	High-Performan				r r r					
IV	OSI and TCP	/IP models	s in comput	ing clusters, Dist			7			
				transfer and IP o						

		centers												
		Transp	ort Lav	er ar	nd Data	ı Tra	ansmiss	ion in	AI S	ystems:				
V		_	-							-	in A	I syst	ems, Socket	
													nnection and	6
		cloud A	AI servi	ices,	UDP: 1	Use	cases in	n real-	time	AI data	strear	ning		
		Applica	tion La	ıyer f	or Inte	ellige	ent Web	Serv	ice:					
VI		World	Wide	Web	: Arch	itec	ture of	AI-p	ower	red web	appl	ication	s, DNS: Fast	6
		resoluti	ion for	AI s	ervice	end	points,	HTT	P/HT	TPS: RI	EST A	APIs for	r AI services,	0
		FTP: Large dataset transfers, SMTP: Automated AI-driven email systems Textbooks												
1		David A. Patterson, John L. Hennessy, "Computer Organization and Designation of Computer Organization and Designation o												
	Hardware/Software Interface", Morgan Kaufmann, 5th Edition, 2017													
2					•		_			•	Kum	ar, "In	troduction to	parallel
		computing", Second Edition, Pearson Education, 2003												
3		Larry Peterson and Bruce Davie, "Computer Networks: A Systems Approach",												
	_		n, 6th E											
4			•	ue S	arker,	"Pyt	thon N	etwor	k Pro	ogramm	ing C	cookbo	ok" Packt Pul	Ltd, 1st
-	edi	ition., 2	2014											
	_			_		~.		eferer						
1							_	•	•			-	Architecture:	A
										nn, 1 st Ec				
2	1						-	puter	Netw	orking: 1	A Top	-Down	Approach", 7	th
	Ed	ition, P	earson	Publ	1cat1or	ı, 20		eful L	l					
1	htt	nc.//arc	hive.np	tal ac	in/col	1rca				163/				
2														
2	https://archive.nptel.ac.in/courses/106/105/106105183/ CO-PO Mapping													
	Programme Outcomes (PO) PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3					0	1	0		2	11	12	2	
CO2	2	1	2			1	-	2		2		2		3
CO3	3	2	_		3	2	1	_	1		2	3	1	-
CO4		3	1	2	2			1			1	1	3	2

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Self-study content should be provided to students and assessed during the In-Semester Evaluation (ISE).

	Walc			ngineering							
		(Governme	ent Aided Auto AY 2025	onomous Institu	te)						
		(Course Infor								
Programn	nο				Machine Learnir	200)					
Class, Sen					Tacillie Learnii	19)					
			Year B. Tech.,	Sem III							
Course No		1AI203	ctures and A	laarithma							
Desired R		Data Siru	ictules allu A	igorumis							
	ching Scheme		Fv	amination Sc	heme (Marks)						
Lecture		ISE	MSE	ESE		Total					
	3 Hrs/week										
Tutorial		20	30	50 Credit	ta. 2	100					
			C Ob:		is: 3						
1	To introduce the fu		Course Obje		orithms						
2	To explain linear,										
3						ations in a	lata				
3	To introduce parallel programming concepts using OpenMP and applications in data structures.										
At the and	Course Outcomes (CO) with Bloom's Taxonomy Level										
At the end	nd of the course, the students will be able to, Bloom's Bloom's										
co	Course Outcome Statement/s Bloom's Bloom Taxonomy Taxonom										
	Level Descri										
CO1	Understand and apply fundamental data structure Level Description Understand and apply fundamental data structure Understand										
COI											
CO2	Design and anal	lyze effici	ient algorith	ms for AI	III, IV		lying,				
	scenarios	. 1		1 1		Ana	lyzing				
CO3	Integrate appropri	ate data st	ructures in the	he design of	IV	Ana	lyzing				
	Evaluate parallel p	rogrammir	no techniques	usino							
CO4	OpenMP to optimi	Ū	•	•	V	Eva	aluate				
Module	Openivii to optimi	Ze data str	Module Co				Цопра				
Module	Basic Concepts:		Module Co.	ntents			Hours				
	-	Morgo	Ouialz cont	Daguda aada	ADT Data St	********					
I	Algorithm, Bubble Algorithmic Efficie						5				
	to Arrays, function	•	· · · · · · · · · · · · · · · · · · ·	ynamic wiem	ory amocation, i	Officers					
	Linked Lists:	and bude									
	Concept of linked	l organizat	tion Singly	linked list d	loubly linked	list and					
П							7				
	dynamic storage management, circular linked list, Operations, traversal on linked list, Linked data organization in AI systems, Circular Linked Lists for										
	implementing cycli	c neural ne	etworks								
	Stacks and Queue	s:									
	Fundamentals stack	-		-	_						
III	stack and queue us	-	-	_	_		7				
	implementation, Expression evaluation and conversion for interpreters in ML										
	frameworks, Backtracking for AI search algorithms, Use of recursion in neural										
	network traversal										
IV	Trees:	1.1.	1.5		1.1		8				
	Basic terminology	, binary tr	ees and its r	epresentation,	binary tree tra	aversals					

	(rec	ursive	and n	onre	cursive), 0]	perations	suc	h as	copy,	equal	on bi	nary	tree,	
	exp	ression	n trees	, G	eneral	Tre	es, Bina	ary	Searc	ch Tre	ee-opti	mizatio	n i	n AI	
	sys	tems, E	3+, AV	L											
	Gra	phs:	Repres	entat	tion: A	Adja	cency N	Aatr	ix v	s. Ac	ljacenc	y Lis	t, (Graph	
	Tra	versals	BFS a	and I	DFS,MS	ST,									
V	Int	roduct	ion to	Para	allel Co	mp	uting:								
v	Basics of parallelism, shared memory, distributed memory, OpenMP basics														6
	(`#pragma omp parallel`). Parallel Linked List Operations														
VI	Design and Analysis of Parallel Algorithms:														
V1	Parallel traversal and search using OpenMP.Parallel Tree Traversals, Parallel													rallel	6
	Merge Sort, Quick Sort, hash table operations														
							Textbo	oks							
1	Richard F. Gilberg, Behrouz A. Forouzan, "Data Structures, A Pseudocode Approach With														
1	C", Cengage Learning, 2nd Edition, 2007														
2	S. Lipschutz, "Data Structures with C", Schaum's Outlines Series, Tata McGraw-Hill,														
	2n	d Editi	on, 20	17											
3	Mi	chael .	J. Quin	n, "	Parallel	Pro	ogrammi	ng i	n C	with N	API an	d Oper	nMP	" Mc	Graw-Hill
	Sci	ience E	inginee	ring	, 1st Ed	itioı	n, 2003								
							Refere								
1	_						nding poi						, 6th	edition	n, 2019
2	Op	enMP	API Sp	ecif	ication	by (OpenMP			ure Re	eview I	Board			
							Useful I	Link	S						
1	htt	ps://npt	el.ac.in	/cou	rses/10	5102	2064								
2	htt	ps://ww	w.opei	nmp.	org/wp-	-con	tent/uplo	ads/	Open	MP-A	PI-Spe	cificati	on-5	.0.pdf	
	CO-PO Mapping														
	Programme Outcomes (PO) PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3		2												2
CO2	2	3			2								3		
CO3	2	2	1		1								2		
CO4	3	1	2		2										1

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Self-study content should be provided to students and assessed during the In-Semester Evaluation (ISE).

				ineering, Sang								
	(Governmen		omous Institute	e)							
			AY 2025-2									
Progra	mmo		ourse Inform		hima I assumin	->						
		·		gence and Mac	nine Learning	g)						
	Semester	1AI204	ear B. Tech., S	em III								
Course			Mathematics									
	l Requisites:		Mathematics Mathematics									
	eaching Scheme	Dusies of		nination Scher	me (Marks)							
Lectur		ISE	MSE	ESE		Total						
Tutoria		20	30	50		100						
14011		20	1 30	Credits:	3	100						
		(Course Objec									
1	To discuss logic al	ong with ma	thematics and	its computer a								
2	To explain set theo	ry, relations	s, functions, la	ttices and algeb	raic structure	s						
3	To describe graph											
				om's Taxonon	ny Level							
At the	end of the course, the st	udents will	be able to,		DI .	- Di						
CO	Cours	e Outcome	Statement/s		Bloom's		oom's					
	Level Descriptor											
		_										
CO1	Summarize fundamental concepts of discrete Mathematics that includes s sets, relations, functions, logic, and proof II Understanding											
	techniques Solve problems based	l on mathen	natical proofs	logical								
CO2	reasoning and graphs		natical proofs,	Togical	III	Ap	plying					
	Identify domain speci	fic applicati	ons by studyii	ng								
CO3	appropriate concepts	and algorith	ms		IV	Ana	alyzing					
	D' 1' '	1		•								
CO4	Discuss combinatoria permutations, combin	• •	•	•	V	Eva	luating					
Modul	·		Module Cont				Hours					
1,10aul	Logic:			C.116,5			110015					
I	Proposition and Pro	edicate Logi	ic, Theory of	Inference for	Statement Ca	ılculus,	6					
	Predicate Calculus,	•	•									
	Set Theory:											
П	Definitions and not						6					
	power sets, Cardinordered pairs	nality theor	y, countable	and uncounta	ble sets, mu	ıltisets,						
	Relations and Functions:											
	Representing Rel		Matricos	Directed area	he Droporti	es of						
III	1			0 1	•		7					
	1	relations Equivalence relations and partitions, Partial orderings, Partially Ordered Sets and Hasse Diagram Types of Functions, Composition of										
	Functions, Inverse		•									
	Combinatorics:											
IV	The rule of s	um and	the rule of	of product,	Permutations	and	6					
1 4	combinations, Pigeo	_	ciple, Inclusion	on-exclusion p	rinciple, recu	ırrence						
	relations, generating	g functions										

		Cne	nh an	d Trees												
Ι τ,			-			1 7				, .		. D:			1	
V			_	_	_		_	ism, Con		-			_	_		7
				_				onian path		rees a	nd its p	orope	rties, I	Root	ed	
								pplication	ıs							
\mathbf{V}	r	Alg	ebraic	Struct	ures	and La	ıttic	es:								
v .	1	Pro	perties	of Alge	brai	c Struct	ures	s, Semi- G	rou	ps, M	onoids	Gro	ups,			7
		sub	groups.	, Homo	mor	phism, I	rop	erties and	l Ty	pes of	Lattic	es				
		Textbooks														
	C. L	. Liu	. Liu, D P Mohapatra, "Elements of Discrete Mathematics: A Computer Oriented													
1	Apr	oroac	roach", TMG, 4 th Edition, 2017													
2		neth H. Rosen," Discrete Mathematics and Its Application", TMG, 7th Edition, 2011														
			Tremblay &R. Manohar, "Discrete Mathematical structure with applications to													
3		apputer", TMG, 1st Edition, (1997) Re-print 2017.														
	COII	ipun	,1101	0, 13t L	artiv	511, (177	7)1	Referen								
1	КГ) Inc	hi "Fo	undatio	n of	Discret	 - М	athematic		2019						
$\frac{1}{2}$	_										415			4 D.	1:4: 0	0007
	Lip	scnu	tz, Mai	c Lipso	n ,"	Discrete		thematics			1'SOUUI	ne se	ries,sr	u E	muon, 2	2007
1	1		1,			25		Useful L			7 (, ,	11		T. D.	
1								6/preview.								
2	http	s://on	linecou	rses.npte	l.ac.i	in/noc25		7/preview		-	Course (Coord	inated I	by II	T Kanpı	ır
								O-PO Ma						1		
		Programme Outcomes (PO) PSO														
		1	2	3	4	5	6	7	8	9	10	11	12	1		2
CC)1	3			2											1
CC)2		2		3									1		
CO)3			3		2							1			
CO)4		3					1								2

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Note: Few Self learning contents should be decided by faculty.

		Wa		_	Engineering,	_						
			(Gover	AY 202)						
				Course Info								
Progr	amme	<u> </u>	B Tech	(AIML)	/1 1110 VI							
	Seme			Year B. Tech	Sem III							
	se Cod		1AI251	Tear B. Teen	., Sem m							
	se Cou se Nan			es & Logics L	ah							
		uisites:	-	Prolog Prog								
		ng Scheme	J 12223,		xamination Scl	heme (Marks)						
Practi		2 Hrs/ Week	LA1	LA2	Lab ESE		'otal					
Tracti	cai	2 THS/ WCCK	30	30	40		100					
			30	Credits:		<u> </u>	100					
				Course Ob								
1	Anal	yze the effective	ness of lo		•	m domains						
2		ement AI Agents										
3	-	gn an AI agent th										
3	Desig				Bloom's Taxor							
A + +ba	and a					lomy Level						
At the	ena o	f the course, the	students v	viii de adie to	,	Bloom's	Bloom's					
CO		Course	Outcom	ne Statement	/c							
		Course	Outcon	ic Statement		Taxonomy Level	Taxonomy Description					
CO1	Appl	y Local Search a	nd Optim	ization Techr	niques	3	Apply					
CO2			or Game I	Playing and D	ecision-	4	Analyse					
G02	CO2 Develop AI Agents for Game Playing and Decision- Making Analyse											
CO3			-) for Knowled	ige	3	Apply					
CO4		esentation and Pl		ant Duahlam	Calcina	6	Create					
CO4	Deve	elop AI Models fo			ab Activities/To		Create					
	I ict	of Lab Assignme		_	ab Activities/10	pics						
		Optimization Usi			Magarithm							
		tasks:	ing the H	in Chinoing 1	ngoriumi							
			e playing									
				,								
				ath finding								
	2. 1	Implement the Si	mulated.	Annealing alg	gorithm to overc	ome local optin	na					
		task:										
		☐ Travellin	g Salesm	an Problem (ΓSP)							
		☐ Knapsac	-									
	☐ Job-shop scheduling											
		☐ Vehicle i		C								
	3. Implement the Minimax Algorithm to enable an AI agent tasks:											
		☐ Tic-Tac-	Гое									
		☐ Chess	- 00									
		☐ Connect	Four									

	4.	Implentasks:	nent Monte Carlo Tree Search: Analyzing Its Effectiveness in Game AI
			Sudoku, Sliding puzzles
			Knapsack problems
			Traveling Salesman Problem (TSP)
			Traveling suresimal Freeze (181)
	5.	_	nenting Backtracking Search for Constraint Satisfaction
		tasks:	Co. 1.1 Donal . Co.1
			Sudoku Puzzle Solving
			N-Queens Problem:
			Graph Coloring
	6.	Implen	nenting and Analyzing the AC-3 Algorithm
		tasks:	
			Map Coloring Problem
			3x3 Sudoku Puzzle
			Unary and Ternary Constraints
	7.	Design	ing a Knowledge-Based Agent for Fact Inference Using Logic and Rules
		Tasks:	
			Inference with Propositional Logic
			Forward Chaining in First-Order Logic
			Rule-Based Decision System
	8.	Explor Tasks:	ing the Use of Backtracking Search in Problem Solving
			Implement Backtracking Search for N-Queens Problem
			Analyze Backtracking with and without Forward Checking in a simple map-
			coloring problem.
	9.	Explor	ing First-Order Logic for Representing Relationships and Entities
		` _	Represent a Family Tree Using FOL
			University Knowledge Base Using FOL
			Knowledge Representation in a Smart Home System
	10	. Implen	nenting FOL-Based Planning for Intelligent Agents:
		Tasks:	
			A robot in a room can pick up a key and unlock a door.
			Enable an agent to plan a sequence of actions to deliver a package using FOL.
			An agent needs to turn on a heater, but it works only if power is available.
			An agent needs to turn on a neater, but it works only it power is available.
			Textbooks
1	Pat	tern Rec	eognition and Machine Learning –BY Christopher M. Bishop
2	Art	ificial In	ntelligence: A Modern Approach (AIMA)-by Stuart Russell & Peter Norvig
2	Edi	i tion : 4tl	n Edition (2020)
2	Art	ificial I	ntelligence: Structures and Strategies for Complex Problem Solving- George F.
3	Lug		

								R	eferer	ices				
1	Russ	sell,	S., 8	k Nor	vig, P	2. (2020)). <i>A</i>	rtifici	ial Int	elligen	ce: A M	odern	Approac	ch (4th ed.). Pearson.
1	(Cha	ıpter	on .	Local	Searc	ch and	Op	timiz	ation)					
2	Van	Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated Annealing: Theory and Applications.												
	Spri	nger.												
								Us	eful L	inks				
1	https	s://wv	ww.g	geeks	forgee	eks.org	<u>,</u> /							
2	https	s://wv	vw.s	swi-pi	rolog.o	org/								
3	https://onlinecourses.nptel.ac.in/noc21_cs79/preview													
4	https://www.redblobgames.com/pathfinding/a-star/introduction.html													
5	https	://dev	elop	ers.gc	ogle.c	om/opt	imiz	ation/	routing	g/tsp				
								CO-l	PO Ma	apping				
				Pro	gramı	ne Ou	tcon	nes (P	O)					PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2		2				2			2	2	2
CO2	3	3	3		3			2	3	1			3	3
CO3	3	3	3	3	3		2		3		1		3	3
CO4	2	2	2	2	2	2			2				2	2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the	30
	journal		end of Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the	30
	journal		end of Week 16	
	Lab activities,	Lab Course Faculty	During Week 18 to Week	
Lab ESE	·	and External	19	40
Lau ESE	journal/	Examiner as	Marks Submission at the	40
	performance	applicable	end of Week 19	

Week 1 indicates the starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2025-26

	Course Information
Programme	B.Tech. (Artificial intelligence and Machine Learning)
Class, Semester	Second Year B. Tech., Sem III
Course Code	1AI252
Course Name	Data structure and Algorithms Lab
Desired Requisites:	computer Programming

Teaching S	Scheme	Examination Scheme (Marks)						
Practical	2 Hrs/ Week	LA1	LA2	Lab ESE	Total			
	-	30	30	40	100			
				Credits: 1				

Course Objectives

- 1 To provide hands-on experience in implementing data structures and algorithms.
- 2 To develop skills in analyzing and optimizing data structure operations.
- 3 To introduce parallel programming using OpenMP for performance enhancement.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

		Bloom's	Bloom's
CO	Course Outcome Statement/s	Taxonomy	Taxonomy
		Level	Description
CO1	Implement and analyze linear and non-linear data structures.	III	Applying
CO2	Demonstrate various searching, sorting and hashing algorithms	III	Applying
CO3	Optimize data structure operations using parallel programming	V	Evaluating
COS	techniques.	v	
CO4	Solve real-world problems using appropriate data structures and	371	Creating
CO4	algorithms.	VI	

List of Experiments / Lab Activities/Topics

List of Lab Assignments: (Minimum 10)

1. Linked List Operations:

Implement a singly linked list with insertion, deletion, and traversal operations.

2. Stack and Queue Operations:

Implement stack and queue operations (push, pop, enqueue, dequeue) using arrays and linked lists.

3. Binary Search Tree (BST) Operations:

Implement insertion, deletion, and traversal in a BST.

Parallelize the traversal operation using OpenMP.

4. Heap Operations:

Implement a min-heap and max-heap with insertion and deletion operations.

- 5. Parallelization of Link List, BST, Heap algorithm
- 6. Graph Traversal (DFS and BFS):

Implement DFS and BFS for a graph represented using an adjacency list.

7. Sorting Algorithms:

Implement QuickSort and MergeSort.

- 8. Searching Algorithms
 - Implement linear and binary searching
- 9. Hashing with OpenMP:
 - Implement a hash table with chaining for collision resolution.
- 10. Parallelization of sorting, searching and hashing algorithms

10.	rara	Henz	atioi	1 01 8	שווו וט	z, sea	CIIII	g and n	asiiiii	g aige)11umis			
								Tex	tbook	S				
1	Ri	chard	F. (Gilbe	rg, Be	ehrou	z A.]	Forouz	an, "I	Data S	tructur	es, A Pseudocode A	Approach	With
1	C"	, Cen	gage	e Lea	rning	, 2 nd]	Editio	n, 200	7					
2	S.	S. Lipschutz, "Data Structures with C", Schaum's Outlines Series, Tata McGraw-Hill,												
	2^{nd}	Edit	ion,	2017										
3	Michael J. Quinn, "Parallel Programming in C with MPI and OpenMP" McGraw-Hill													
	Sc	ience	Eng	ginee	ring,	1st E	dition	, 2003						
								Refe	erenc	es				
1	Ya	shav	ant I	Kanet	kar, "	·Unde	erstan	ding p	ointer	s in C	", BPB	Publication, 6th ed	ition, 2019	9
2	Op	enM	P A	PI Sp	ecific	ation	by O	penMI	P Arcl	hitecti	ıre Rev	iew Board		
								Usefu	ıl Lin	ks				
1	htt	ps://n	ptel.	ac.in/	cours	ses/10	6102	064						
2	htt	ps://w	ww	.open	mp.o	rg/wp	o-cont	ent/upl	oads/	Openl	MP-AP	I-Specification-5.0.p	odf	
3	NF	PTEL	Dat	a Str	ucture	es Co	urse (https://	nptel.	ac.in/c	courses	/106/103/106103069	9/)	
					Prog	gram	me C	Outcon	nes (P	O)			PSC)
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2			2								2	
CO2	2	3	3		3							2		2
CO3	1	2	2		3							1	3	
	2	3	1		1							1	1	3

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Based on	Conducted by	Typical Schedule	Marks
Lab activities,		During Week 1 to Week 8	
attendance, journal	Lab Course Faculty	Marks Submission at the end	
attendance, journal		of Week 8	
Lab activities,		During Week 9 to Week 16	
attendance, journal	Lab Course Faculty	Marks Submission at the end	30
attendance, journal		of Week 16	
Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
journal/	External Examiner as	Marks Submission at the end	40
performance	applicable	of Week 19	

Week 1 indicates the starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

	Wa	lchand Coll	_	gineering,	Sangli		
		(00,000	AY 2025-2				
		Co	urse Inform	ation			
Programme	e	B.Tech. (AIML	<u></u>				
Class, Seme		Second Year E	•	III/IV			
Course Cod		1AI253					
Course Nar		OOP-I (CPP Pr	ogramming)	Lah			
Desired Re	quisites:	C Programmin			amming Langı	ıage	
			<u> </u>				
Teac	hing Scheme			Examination	Scheme (Ma	rks)	
Lectures		1 Hrs/Week	LA1	LA2	Lab ESE	,	Fotal
Practical		2 Hrs/Week	30	30	40		100
				Cı	edits: 1		
		Co	ourse Object	tives			
1	To learn th	e fundamental p	rogramming	concepts and	methodologies	which	are
2	building go	ood C/C++ progra	ıms				
	Cour	rse Outcomes (C	CO) with Blo	om's Taxono	my Level		
At the end o	of the course, t	he students will	be able to,				
					Bloom's	В	loom's
	Course Ou	itcome Stateme	nt/s		Taxonomy Level	1	xonomy cription
CO1		eject Oriented rea g (OOP) concept		cations	I	Unde	erstanding
CO2	Implement s	imple C++ progr	ams using cl	asses and	III	Aj	oplying
CO3	Compare programmin	ocedural and app	proaches obje	ect-oriented	IV	Ar	alysing
CO4		dvantages and an atages of using c	3		V	Ev	aluating
Module]	Module Con	tents			Hours
	Introductio	n to OOP and I	Basics of C+-	+:			
I		to Object-Orien	_			ng	2
		bjects, Basic syr		•	rogramming		
		ata types, variab	les, and oper	ators in C++.			
II	Object and			3.6			2
11		lasses and obje					4
		Access spec rs and destructo	-	one, private	, and prote	ectea,	
	Polymorph		/10				
	- 0-J P11						

compile-time

and

runtime

2

III

Polymorphism

and

its

types:

	polymorphism.Overloading unary operations. Overloading binary operators, data conversion, pitfalls of operators overloading and conversion keywords. Explicit and Mutable.	
	Inheritance-I:	
IV	Understanding inheritance and its types: single, multiple, multilevel, and hierarchical inheritance, Implementing inheritance in C++ using base and derived classes, ,Virtual functions and function overriding in C++	2
	Advanced OOP Concepts:	
V	Abstract classes and pure virtual functions, Interface classes and their usage, Friend functions and friend classes	2
	Exception Handling and Templates:	
VI	Understanding exceptions and exception handling in C++, Try-catch blocks and exception specifications, Introduction to C++ templates for generic programming, Writing and using class templates and function templates	2
	List of Experiments / Lab Activities/Topics	
Lis	t of Lab Activities:	
Lis	t of Lab Activities:	
_	ram on input/output stream	
_	gram on class and objects.	
_	gram on Inline/Friend functions.	
_	gram on Constructor/Destructors. gram static variables/class/functions.	
_	gram on polymorphism.	
_	gram on different types of inheritance.	
_	gram on operator overloading.	
9. Prog	gram on File Operations.	
10. Star	ndard Template Library (STL):	
	tainers (vectors, lists, maps, sets)	
12. Algo	orithms (sort, find, transform)	
	Textbooks	

1	2. Algorithms (sort, find, transform)
	Textbooks
1	E.Balguruswamy, "Object Oriented Programming C++", Tata McGraw Hill, 3rd Edition,
	2006.
2	Bjarne Stroustrup, "The C++ Programming language", Third edition, Pearson Education.
	References
1	Robert Laffore, "Object Oriented Programming in c++", SAMS publication,
	4thEdition,2008.
	Useful Links

	Pro	gramn	ne Ou	tcom	es (P	O)								PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3												2	
CO2			2										3	
CO3		2											2	
CO4												2	1	2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the	30
	journal		end of Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the	30
	journal		end of Week 16	
	Lab activities,	Lab Course Faculty	During Week 18 to Week	
Lab ESE	· · · · · · · · · · · · · · · · · · ·	and External	19	40
	journal/	Examiner as	Marks Submission at the	40
	performance	applicable	end of Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Sem-IV

Walchand College of Engineering, Sangli										
			ent Aided Auto	onomous Institute)						
			AY 2025							
Duaguana			Course Infor		T .					
Program Class Sa				ligence and Machi	ne Learning)					
Class, Se		Second Y 1AI221	ear B. Tech.,	Sem IV						
Course N			Modelling in	ΔΙ						
	Requisites:		Intelligence (
	ching Scheme			amination Schem	e (Marks)					
Lecture	3 Hrs/week	ISE	MSE	ESE		Γotal				
Tutorial		20	30	50		100				
			'	Credits: 3						
Course Objectives										
1										
2	Understand the principles of knowledge representation in uncertain domain									
3 Explain the concepts of utility functions and human decision-making.										
Course Outcomes (CO) with Bloom's Taxonomy Level										
At the end of the course, the students will be able to,										
со	Course Outcome Statement/s Bloom's Taxonomy Level De									
CO1	Implement state-space search algorithms like forward and backward search									
CO2	Explain the semantics of Bayesian Networks and their applications in AI. Under									
CO3	Analyze the valu		nation in AI	-based decision	4	Ana	alyzing			
CO4	processes. Define the core p	principles	of multiagen	at environments	1	Reme	embering			
	in AI.				_					
Module	Classical Plane		Module Co				Hours			
I	Classical Planni Introduction to Heuristics and Domains, Time,	Classical I Hierarchic	Planning, A cal Planning	lgorithms for Cl g, Planning in			6			
II	Probabilistic Reasoning and Decision Making Under Uncertainty Introduction to Uncertainty in AI, Foundations of Probability Theory, Probabilistic Inference, Bayes' Theorem and Its Applications, Naïve Bayes and Its Real-World Applications, Case Study - The Wumpus World									
III	Bayesian Networks and Temporal Probabilistic Models in AI Knowledge Representation in Uncertain Domains, Bayesian Network									
IV	Advanced Prob Introduction to A				nce in Relat	ional	6			

		E:	nviron enerati	ments,	Pı Iode	obabil	istic d]	s, Track Progr Markov	ams	an	d AI	Dec	ision	Mal	king,	
	V	Decision Making Under Uncertainty and Sequential Decision Fundamentals of Decision Making Under Uncertainty, Utility Functions and Human Decision-Making, Multi-attribute Utility and Decision Networks, The Value of Information in AI, Handling Unknown Preferences in AI, Sequential Decision Problems and MDPs, Advanced Decision-Making: POMDPs and Bandit Problems Multiagent Systems and Game Theory													ision lown	7
		Multiagent Systems and Game Theory														
\	Cooperative Game Theory and Strategic Interaction, Collective Decision Making, Bargaining and Negotiation in AI												6			
	Textbooks															
S. Russell and P. Norvig, <i>Artificial Intelligence: A Modern Approach</i> , 4th ed., Pearson, 2020.																
References S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th ed., Pea																
1	S. F 202		ell and	P. Noi	rvig,	, Artific	cial	Intellige	ence	: A M	Iodern 1	Appro	oach, ²	4th e	d., Pea	arson,
2			er and ess, 20		edma	an, <i>Pro</i>	bab	oilistic G	^l rap	hical	Model	s: Pri	nciple	s and	d Tech	niques,
3			llab, D ann, 20		and	P. Trav	vers	o, Auton	nate	d Pla	anning:	Theo	ry ana	l Pra	ıctice,	Morgan
								Useful 1	Link	KS .						
1	http	os://a	ima.cs	.berkel	ey.e	du/										
2	http	os://n	nitpres	s.mit.e	du/9	78026	201	3192/pro	bab	ilisti	c-graph	ical-r	nodels	S/		
3	http	os://v	ww.sc	ciencec	lirec	t.com/l	ool	x/97815	5860)856	6/autom	nated-	planni	ng		
4	http	os://n	ptel.ac	in/cou	rses	/10610	620	1								
5	http	os://n	ptel.ac	in/cou	rses	/10610	507	7								
							C	CO-PO M	Iapp	ing						
					Pı	rogram	me	Outcom	es (F	PO)					PS	О
		1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO		2	3	3		2								3		2
CO		2	2		3	2		1						2		3
CO			2	3	3				2				12	2		3
CO		2	2	3		•	2	100 ***		3		2	2	2		3
The	strer	igth (of mapp	oing is	to be	writtei	1 as	1,2,3; W	nere	, 1: L	ow, 2: N	1ediui	m, 3: H	ıgh		

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment

can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Note: Self Study content should be provided to students and Evaluation should be carried out at time of ISE

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2025-26

Course Information										
Programme	B.Tech.									
Class, Semester Second Year (AIML), Sem IV										
Course Code	1AI222									
Course Name	Mathematical foundation for AI									
Desired Requisites:	Mathematics course at Higher Secondary Level									

Teachir	ng Scheme	Examination Scheme (Marks)										
Lecture	3 Hrs/week	MSE	ISE	ESE	Total							
Tutorial	-	30	20	50	100							
		Credits: 03										

Course Objectives

- 1 Familiarize the students with techniques in probability and statistics.
- Develop knowledge of standard probability distributions such as Binomial, Poisson, Normal, and Exponential.
- 3 Design a statistical hypothesis about the real world problem and conduct appropriate test for drawing valid inference about the population characteristics.
- 4 Introduce the fundamental concepts of interpolation, numerical differentiation and integration.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to

		Bloom's	Bloom's
CO	Course Outcome Statements	Taxonomy	Taxonomy
		Level	Descriptor
CO1	Understand probability distributions for discrete and	II	Understanding
	continuous random variable.		Understanding
CO2	Apply various discrete & continuous distributions to solve	III	A1==::
	real life problems.		Applying
CO3	Test hypothesis particularly about mean and proportion and	III	
	goodness of fit to make decisions in real life problems		Applying
	using concepts of Sampling distribution.		
CO4	Apply interpolation techniques for estimating unknown	III	A 1 '
	data points within a given range.		Applying
CO5	Apply numerical methods for differentiation and	III	A
	integration to solve engineering problems.		Applying

Random Variable: Definition, Discrete random variable, Continuous random variable, Probability mass function, Probability density function, cumulative distribution function for discrete random variable and continuous random variable, bivariate discrete random variable, joint probability distribution, joint distribution function of two dimensional discrete random variables. Probability Distribution: Binomial distribution, Poisson distribution, Gaussian (Normal) distribution, Exponential distribution, Examples. Interpolation and Approximation: Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population proportion, hypothesis testing for single population proportion, hypothesis testing for single population Definition and its properties, chi square test, chi square distribution: Definitions and its properties, chi square test, chi square distribution. Definitions and its properties, chi square test, chi square distribution, Error analysis, numerical integration, methods based on interpolation, Newton cotes methods, Error estimates for trapezoidal and Simpson's rule.	6											
Probability mass function, Probability density function, cumulative distribution function for discrete random variable and continuous random variable, bivariate discrete random variable, joint probability distribution, joint distribution function of two dimensional discrete random variables. Probability Distribution: II Binomial distribution, Poisson distribution, Gaussian (Normal) distribution, Exponential distribution, Examples. Interpolation and Approximation: Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population proportion, hypothesis testing for single population proportion, bypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Newton cotes	6											
joint distribution function of two dimensional discrete random variables. Probability Distribution: Binomial distribution, Poisson distribution, Gaussian (Normal) distribution, Exponential distribution, Examples. Interpolation and Approximation: Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
Probability Distribution: Binomial distribution, Poisson distribution, Gaussian (Normal) distribution, Exponential distribution, Examples. Interpolation and Approximation: Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
III Binomial distribution, Poisson distribution, Gaussian (Normal) distribution, Exponential distribution, Examples. Interpolation and Approximation: Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Newton cotes												
Exponential distribution, Examples. Interpolation and Approximation: Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	_											
III Interpolation and Approximation: Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	5											
Lagrange's interpolation formula, forward and backward difference interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
interpolation formula, Newton's divided difference interpolation formula, Hermite interpolation formula. Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
IV Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	8											
IV Sampling Distribution: Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	o											
Population, Sample, Random samples, Methods of sampling, large sample, small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
small sample, parameter, statistic, standard error of Statistic, sampling distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	6											
distribution of mean, sampling distribution of proportion, Examples. Hypothesis, null and alternative hypothesis, critical region, level of significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	U											
significance, Types of error, one tailed test, two tailed test. Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
Applied Statistics: Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
Test of significance for large samples, Hypothesis testing for single population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
population proportion, hypothesis testing for single population mean, Examples, Test of significance for small samples, degrees of freedom, student t distribution: Definition and its properties, Test the significance of mean of random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	6											
random sample, Examples, Chi-square distribution: Definitions and its properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes	0											
properties, chi square test, chi square test of goodness of fit, Examples. Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
VI Numerical Differentiation and Integration: Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
VI Numerical differentiation, methods based on interpolation, Error analysis, numerical integration, methods based on interpolation, Newton cotes												
numerical integration, methods based on interpolation, Newton cotes												
numerical integration, methods based on interpolation, Newton cotes	7											
methods, Error estimates for trapezoidal and Simpson's rule.												
Touthoole												
Textbooks "An Introduction to probability and Statistics", V.K. Rohatgi, Wiley Publication, 2 nd E	Edition											
¹ 2008.												
2 "Introductory Methods of Numerical Analysis", S.S. Sastry, 3rd edition, Prentice Hall of 1 1999.	India,											
References												
"Introduction to Probability and Statistics for Engineers and Scientists". Sheldon M. Ros	SS.											
Academic Press, (2009).												
2 "Probability and Statistics", Dr. Hari Arora, S.K.Kataria & Sons, 4th Edition, 2020.												
"Numerical methods for scientific and Engineering Computation", M. K. Jain, S. R. K. Ive	"Numerical methods for scientific and Engineering Computation", M. K. Jain, S. R. K. Iyengar,											
R. K. Jain, New Age International Limited Publishers.												
4 "Numerical Analysis", E Balguruswamy. Tata McGraw Hill Publications.												

- 5 "Numerical method for Engineers" S.C. Chapra, R.P. Canale (Tata McGraw Hill Publications)
- 6 "Computer oriented Numerical methods", A. B. Auti Tech-max publications.

Useful Links

- 1. https://nptel.ac.in/courses/111106525
- 2. https://nptel.ac.in/courses/122102009
- 3. https://nptel.ac.in/courses/122102009
- 4. https://nptel.ac.in/courses/111105041

CO-PO Mapping

			PSO											
	1 2 3 4 5 6 7 8 9 10 11 12									1	2			
CO1	3	2			2							2	2	2
CO2	3	3	2	2	2	1						2	3	3
CO3	3	3	2	3	2	1		1		1		3	3	3
CO4	2	2	2	2	2							2	2	2
CO5	3	3	2	3	3						1	3	3	3

The strength of mapping is to be written as 1,2,3; Where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Note: Self Study content should be provided to students and Evaluation should be carried out at time of ISE

Walchand College of Engineering, Sangli												
	**		_	Autonomous Institute)	angn							
		(AY 20									
			Course In	formation								
Progra	mme	B.Tech. (AI										
Class, S	Semester		ar B. Tech., S	em V/VI								
Course	Code	1AI223	,									
Course	Name	Operating S	System									
Desired	l Requisites:	Computer A	Architecture									
Tea	ching Scheme		E	xamination Scheme	(Marks)							
Lecture	e 3 Hrs/week	ISE	MSE	ESE	7	Γotal						
Tutoria	ıl	20	30	50		100						
				Credits: 3								
	Course Objectives											
1	1 To Introduce concepts, functions and services of operating systems.											
2	To inculcate the concepts of inter-process communication techniques.											
3	1 1											
4 To explore file system structures and storage management												
Course Outcomes (CO) with Bloom's Taxonomy Level												
At the end of the course, the students will be able to,												
GO.	Course Outcome Statement/s Bloom's Bl											
CO	Course Outcome Statement/s Taxonomy Level Taxonomy Descriptor											
	Examine the bas	ic concepts.	functions an	d services provided	II	-	derstandin					
CO1	by operating syst	_		r			g					
	1 1		scheduling,	process scheduling/	III/IV	Α	pplying					
CO2	synchronization.	•	O . 1			/A	nalyzing					
CO3	Compare process	s managemer	nt, threads an	d its applications.	IV	A	nalyzing					
G 0.4	Analyze/Compar	e different	memory ma	anagement systems	IV	A	nalyzing					
CO4	and various file s			•								
Module		<u>· </u>	Module C	Contents			Hours					
	Introduction:											
	Introduction to	Assembler	and Linker	and its Types, Load	der and its ty	pes,						
I	Introduction to	Compiler, A	spects of Co	mpilation, Phases of	a Compiler.		6					
1	•			nterface of OS, system								
	·			essing and Multiprogram	ramming syste	ems,						
		stem, Introdu	action to vari	ious types of OS								
	Process Process Concept Process Scheduling Operation on process Concepting											
	Process Concept, Process Scheduling, Operation on process, Cooperating process, Threads, Inter-process Communication.											
II	1 *	•		t, Scheduling Crit	eria Schedu	ıling	8					
	Algorithms (FCFS, SJF, RR, Priority, Multilevel Queue Scheduling), Multiple processor and Real time scheduling.											
	Inter-process											
III	_	-		Critical Region, Th	ne critical sec	ction	5					
	1	•		Semaphores.								
	problem, reter		.,									

Deadlocks														
IV	S	yste	m mod							Methods for deadlock de		_		6
V	B A V	ackg lloca irtu	ation, l al M e	, Lo Intro emo	gica duc ry:	al Ver tion to Back	o Pag groui	ging, So nd, De	egmenta	ess space, tion, Segme paging, Pa	entation	with pagin	ıg.	8
VI	Introduction to File system structure, file indexing, file-system implementation, directory implementation, Basics of Allocation Method- Contiguous, Linked, Indexed.													
Textbooks														
1 D.M Dhamdhere "Systems Programming Paperback" TMGH,1st Edition July 2011												2011(U	Jnit I)	
2	James I Deterson and A Silberchetz "Operating System Concepts" Addison											ddison	Westley	
2	Mil	lan N	Milenk	ovic	,"O	perati	ng S	ystem	- Conce	pt and Desi	gn", TM	GH,1st Ed	ition,20	001
								Re	ference	<u>s</u>				
1			n Stal tion,7t	_		_	_	Syst	ems :	Internals	and De	sign Prin	ciples"	Peterson,
2			y Cha tion,1¤			_	_	Syste	ms : A	Design-O	riented A	Approach"	,Mc G	raw Hill
								Use	ful Linl	KS				
1	http	os://o	nlinec	ours	es.s	wayar	n2.ac	in/cec	20_cs06	5/preview				
2	http	os://c	nlinec	ours	es.n	ptel.a	c.in/n	oc24_	cs108/pi	review				
								CO-P	О Марј	oing				
						Prog	gram	me O	utcomes	(PO)			I	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1										1	2	
CO2	1	3	1		2				1				2	
CO3	1	2	2	3	2			1	2	1		2	1	2
CO4		2		2	2			1	2	1	1	2		2

Examine the basic concepts, functions and services provided by operating systems.

Explore and compare CPU scheduling, process scheduling/synchronization.

Compare process management, threads and its applications.

Analyze/Compare different memory management systems and various file systems of operating systems.

Assessment

The assessment is based on MSE, ISE and ESE.MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO. ISE assignments should focus on teamwork. Self-study Contents related to subject need to be

handled by faculty and evaluation has to be done in ISE.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

				ege of Eng								
		(Aided Autonor AY 2025-26	<u></u>							
			Cor	ırse Informa	tion							
Program	me					Iachine Learni	1g)					
Class, Se	mester			ear B. Tech., S								
Course C	Code		1AI224									
Course N	lame		Computati	ional Algorith	ıms							
Desired I	Requisit	es:	Data Struc	ctures and Alg	gorithms							
Tea	aching S	cheme		Exar	nination Sch	eme (Marks)						
Lecture		3 Hrs/week	ISE	MSE	ESE		Total					
Tutorial			20	30	50		100					
	Credits: 3											
Course Objectives												
1 To introduce fundamental algorithmic techniques and their applications in problem-												
solving.												
2 To develop skills in designing and analyzing algorithms for efficiency.												
To introduce parallel programming concepts using MPI for scalable algorithm design												
		Course O	utcomes (C	O) with Bloo	m's Taxono	my Level						
At the end	d of the o	course, the stud	lents will be	able to,								
	Bloom's B											
CO	Course Outcome Statement/s Taxonomy Tax Level Description											
CO1	Analyze and compare the efficiency of algorithms using Analyze											
		otic notation.	4 41-14	1								
CO2	_	and implement ic programmin			eedy, and	6	Create	:				
CO3		graph algorithi			blems.	5	Evalua	ate				
CO4	Develo	p parallel algo	rithms using	g MPI for sca	lable	6	Create	:				
Module	periori	mance.	M	Iodule Conte	ntc			Hours				
wiodule	Introd	uction to Algo				tic notation (Bi	g <u>-</u> ()	Hours				
I		Big- Θ), Time a	-				50,	7				
1	_	on, Fractional I	_			iiis. 7 leti vity		,				
		and Conquer				ch						
II		ic Programmii	_		•			7				
		•	•	•	_			,				
t contract to the contract to	Subsequence (LCS), Matrix Chain multiplication, 0/1 Knapsack. Introduction to Parallel Computing: Basics of parallelism, MPI basics,											
		uction to Para	allel Compu	ting: Basics	of parallelism	n. MPI basics.						
III	Introd		-	O	•			7				
III	Introd	uted memory A	-	O	•			7				
III	Introd Distrib Merges Graph	uted memory A Sort based shorte s	Architecture st path Alge	, Parallel mat	rix multiplica		ical	7				
IV	Introd Distrib Merges Graph sorting	uted memory A Sort based shortes of vertices, Di	Architecture st path Algo ijkstra's algo	, Parallel mat orithm: Belln orithm	rix multiplica	ntion, Parallel	ical					
	Introd Distrib Merges Graph sorting Other multipl	based shortes of vertices, Di Shortest Path ication, Floyd-	Architecture st path Algo ijkstra's algo Algorithm	, Parallel mat orithm: Bellr orithm s: All-pairs sh	rix multiplicanan-Ford algonortest paths,	ntion, Parallel						
IV V	Introd Distrib Merges Graph sorting Other multipl Comple	based shortes of vertices, Di Shortest Path ication, Floyd-exity classes	Architecture st path Alge ijkstra's alge Algorithm Warshall al	, Parallel mat orithm: Bella orithm s: All-pairs sh gorithm, John	rix multiplica nan-Ford algo nortest paths, nson's algorit	ntion, Parallel orithm, topolog Matrix- hm, Max Flow	,	7				
IV	Introd Distrib Merges Graph sorting Other multipl Comple Advan	based shortes of vertices, Di Shortest Path ication, Floyd-exity classes	Architecture st path Algo ijkstra's algo Algorithm Warshall al	, Parallel mat orithm: Bellr orithm s: All-pairs sh gorithm, John algorithms, A	rix multiplica nan-Ford algo nortest paths, nson's algorit	ntion, Parallel orithm, topolog Matrix-	,	7				

Textbooks																					
1	Intro	duction	n to A	lgorith	ms by	y Thom	as H.	Corm	en, Cl	narles	E. Leis	erson,	Ronald	L. Rivest,							
1	and C	lifford	l Stein																		
2	Algor	ithm I	Design	by Jor	Klei	inberg a	ınd Év	va Ta	rdos.												
3	Parall	Parallel Programming in C with MPI and OpenMP by Michael J. Quinn																			
References																					
1 The Art of Computer Programming"** by Donald E. Knuth.																					
2	2 Algorithms by Robert Sedgewick and Kevin Wayne.																				
Useful Links																					
1	GeeksforGeeks Algorithms (https://www.geeksforgeeks.org/fundamentals-of-algorithms/)												ithms/)								
2	MPI (Officia	l Docu	ımenta	tion (https://v	WWW.1	mpi-f	orum.c	org/doc	CS/)										
3	NPTE	EL Alg	orithn	ns Cou	rse (h	ttps://np	tel.ac	.in/co	urses/	106/10	6/106	106131)								
						CO-P	O Ma	pping	3												
	Progr	amme	Outco	mes (P	O)								PSO								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2							
CO1	3	2																			
CO2		3																			
CO3	2	3																			
CO4	3	1	2		2																

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

	Walc		_	ngineering, S	Sangli					
		(Government	AY 2025							
	Course Information									
Prograi	Programme B.Tech. (AI ML)									
Class, S										
Course	urse Code 1AI271									
	rse Name Python Programming Lab									
Desired	Desired Requisites: Computer Programming									
Tea	aching Scheme		Exa	mination Schen	ne (Marks)					
Lecture	1 Hrs/week	LA1	LA2	ESE	Tot	al				
Practica	al 2 Hrs/week	30	30	40	10	0				
				Credits: 2	1					
		Co	ourse Obje	ectives						
1	To understand P									
2	To learn how to	design and pro	ogram Pytl	non applications.						
3	To make use of	the different li	braries of	Python.						
4		<u> </u>		alization using va						
				loom's Taxonom	y Level					
At the e	nd of the course, the s	tudents will b	e able to,			_				
СО	Cou	rse Outcome	Statemen	t/s	Bloom's Taxonomy Level	Ta	Bloom's axonomy escriptor			
CO1	Explain the importation them to solve problem		n's data stri	actures and use	III	A	pplying			
CO2	Learn and examine various libraries ef		amming m	odels and use its	IV	A	nalyzing			
CO3	Implement, test and	d debug the co	de written	in Python.	VI	C	Creating			
CO4	Draw various kinds	s of plots using	g various li	braries.	VI	C	Creating			
Module		M	Iodule Cor	ntents			Hours			
	Introduction to									
	Variables and Da	nta Types: Intr	oduction to	o different variab	les and data typ	oes				
I	(integers, floats, s	strings, lists, tu	iples, diction	onaries) and varia	ble assignment.		2			
	Control Flow: U	-			f) and loops (f	or,				
	while) to control			rogram						
	Functions, Mod	-								
		Functions: Defining and calling functions, understanding scope (local and								
II	global variables), and using lambda functions (anonymous functions). Modules and Packages: Importing and using standard libraries and creating									
11	custom modules.		-	-		_	2			
	Lists and Diction	•								
	modules and exte			.,, = = 0 8. 4	o 2	,				
111	File handling an			ty:			2			
III	Python File Ope	erations: Unde	rstanding	file read and wi	rite functions, f	file	3			

	pointer using seek Programming and file operations.	
	Database Programming: Connecting to a database, Creating Tables,	
	INSERT, UPDATE, DELETE and READ operations, Transaction Control,	
	Disconnecting from a database.	
	Classes and Object-Oriented Programming:	
IV	Abstract Data Types and Classes, Information Hiding, Class in Python, Objects in Python, Polymorphism in Python, Encapsulation in Python, Inheritance in Python, Data Abstraction in Python.	2
	Python-Numpy and Pandas: NumPy: Introduction, Numpy array, Numpy	
V	array indexing, Numpy operations. Pandas: Series, Data frames, managing missing data, group by, merging & concatenation, operations, data input and data output. NumPy and Pandas for data manipulation and analysis.	2
	Python for Data Visualization:	
VI	Working with Graphs: Understanding Python graph algorithms, visualizing graphs using libraries -Matplotlib, Seaborn, Plotly and Cufflinks. Matplotlib: Creating various types of plots (line, bar, scatter, histogram) and customizing them. Seaborn: Generating advanced visualizations and integrating arith Mataletili for a knowledge and problems.	2
	integrating with Matplotlib for enhanced graphics	
	List of Experiments / Lab Activities/Topics	
	List of Lab Activities:	
1.	Problem solving using core Python functionality like strings, variables, functions.	
2.	Problem solving using core Python functionality like tuples, dictionary, list, objects	S
3	Problem solving using Class & object concents	

- 3. Problem solving using Class & object concepts.
- 4. Problem statement on inheritance in classes
- 5. Problem based on encapsulation in classes
- 6. Problem statement on array
- 7. Problem statement on NumPy libraries with different operations
- 8. Problem statement on Pandas libraries with different operations
- 9. Problem statement on NumPy and Pandas use for data manipulation and analysis.
- 10. Problem statement on data visualization using Matplot Libraries.
- 11. Problem statement on data visualization using Seaborn Libraries.

Best Practices used for lab:

	☐ Some assignments are in group of students to understand teamwork						
	☐ Writing clean and readable code						
	☐ Testing and debugging						
	☐ Documentation and comments						
	□ Version control with Git						
	Textbooks						
1	R. Nageswara Rao, □Core Python Programming□, Dreamtech Press, 2nd Edition, 2017						
2	Eric Matthes - "Python Crash Course", "Automate the Boring Stuff with Python" 2nd						
	Edition,2019						
	References						
1	Barry, Paul, Head First Python, O Rielly,2nd Edition, 2010						
2	Lutz, Mark, Learning Python, O Rielly, 4th Edition, 2009						
	Useful Links						
1	https://onlinecourses.nptel.ac.in/noc19_mg47/preview						
1	https://onlinecourses.nptel.ac.in/noc22_cs32/preview						

2	<u>http</u>	https://onlinecourses.nptel.ac.in/noc24_cs45/preview												
CO-PO Mapping														
				Pr	ogra	amme	Outo	come	s (P	0)				PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2			3								1	
CO2	1	2	2	3	2							1	2	1
CO3		3	3		3			2	2	2	2	1	1	2
CO4	2	2			3			2	2	2	2	2	2	2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE. Self-study Contents related to subject need to be handled by faculty and evaluation has to be done in ISE

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Marks Submission at the end of Week 4	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 10 Marks Submission at the end of Week 10	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 10 to Week 13 Marks Submission at the end of Week 13	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2025-26

A1 2025-20										
	Course Information									
Programme B.Tech. (AIML)										
Class, Semes	ster	Second Year	Second Year B. Tech., Sem IV							
Course Code	e	1AI272								
Course Nam	e	Decision Mo	delling Lab							
Desired Req	uisites:	Computer Pr	rogramming							
Teachi	ng Scheme	Examination Scheme (Marks)								
Practical	2 Hrs/ Week	LA1								

Teachi	ing Scheme		Examina	ation Scheme (Marks	3)						
Practical	2 Hrs/ Week	LA1	LA2	Lab ESE	Total						
	-	30	30	40	100						
			Credits: 1								

Course Objectives

- Understand fundamental concepts of classical planning and implement search algorithms
 Analyze probabilistic models and simulate stochastic events
 - 3 Explore game-theoretic strategies by implementing algorithms

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Implement and Analyze Classical Search Algorithms	4	Analyze
CO2	Apply Advanced Heuristic Search Techniques in AI	3	Apply
CO3	Understand and Implement Probabilistic Models and	2,4	Knowledge,
	Reasoning	۷,4	analyze
CO4	Explore Decision-Making Models and Game Theory.	6	Evaluate

List of Experiments / Lab Activities/Topics

List of Lab Assignments: (Minimum 10)

1. Implementation of Classical Search Algorithms for AI Planning

Tasks:

- Robot Path Planning in a 2D Grid Using BFS and DFS
- Implement A* and Greedy Search for Optimal Pathfinding
- 2. Heuristic Generation and Analysis in Planning Problems.

Tasks:

- Implement Manhattan and Euclidean Heuristics in A*
- Design a Custom Heuristic for a Block Rearrangement Problem
- 3.To apply Bayes' theorem for probabilistic inference in uncertain real-world scenarios.

Tasks:

- Medical Diagnosis
- Email Spam Filtering
- Weather Forecast Interpretation
- 4. Build and evaluate a Naïve Bayes classifier on a simple dataset.

Tasks:

- Data Preparation
- Training Naïve Bayes Model
- Testing and Evaluation

5. Model uncertain relationships using Bayesian networks and perform inference.

Tasks:

- Design a Bayesian Network
- Perform Inference
- Use Python Tools
- 6. To implement Hidden Markov Models and Kalman Filters to model temporal uncertainty and perform state estimation.

Tasks:

- Define a simple weather model with hidden states (Sunny, Rainy) and observations (Dry, Wet).
- Implement the Forward Algorithm to compute the probability of an observation sequence.
- Understand the Kalman filter concept for continuous state estimation (e.g., tracking a moving object).

7. Constructing and Analyzing Bayesian Networks for Real-World Reasoning

Tasks:

- Student Exam Performance Prediction
- Medical Diagnosis System
- Car Starting Problem
- 8. Implementation of Particle Filters for Object Tracking in Noisy Environments

Tasks:

- Robot Tracking on a 1D Grid
- Person Tracking Using Noisy GPS in 2D
- Drone Altitude Estimation with Noisy Barometric Sensor
- 9. To represent uncertain outcomes and evaluate decision alternatives using utility theory.

Tasks:

- Medical Treatment Choice
- Investment Decision

10. Analysis of Strategic Interaction in Multiagent Environments Using Non-Cooperative Game Theory

Tasks:

- Prisoner's Dilemma
- Matching Pennies

	With the state of						
	Textbooks						
	R. E. Fikes and N. J. Nilsson, STRIPS: A New Approach to the Application of						
1	Theorem Proving to Problem Solving, Artificial Intelligence, vol. 2, no. 3-4, pp.						
	189-208, 1971.						
2	S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th ed.						
2	Pearson, 2020.						
3	C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.						
	References						
1	Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.).						
1	Pearson. (Chapter on Local Search and Optimization)						
2	Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated Annealing: Theory and						
2	Applications. Springer.						
	Useful Links						
1	https://archive.nptel.ac.in/courses/110/105/110105082/						

2	https://www.swi-prolog.org/													
3	3 https://onlinecourses.nptel.ac.in/noc21_cs79/preview													
4.	https	s://wv	vw.geeks	forgeel	ks.or	g/								
	CO-PO Mapping													
			Prog	gramm	e Oı	ıtcoı	nes	(PO)					PS	SO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2	2				2				2	2
CO2	3	3	3	3	3			1	3	2			3	3
CO3	3	3	3	3	3	3	3				1		3	3
CO4	2	2	2	2	2	2			2			1	2	2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates the starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2025-26

Course Information					
Programme	B.Tech. (Artificial intelligence and Machine Learning)				
Class, Semester	Second Year B. Tech., Sem IV				
Course Code	1VSAI245				
Course Name	Frontend Technologies				
Desired Requisites:					

Teaching	Scheme	Examination Scheme (Marks)						
Practical	Practical 2 Hrs/ Week		LA2	Lab ESE	Total			
	-	30	30	40	100			
		Credits: 1						

Course Objectives

1	Introduce foundational concepts of android and web user interface design
2	Demonstrate modern web and android development tools to build for interactive applications
3	Facilitate hand-on experience to develop responsive and adaptive user interfaces

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Apply Android lifecycle management principles to manage activities of mobile application	III	Applying
CO2	Use android development tools to build user interface for mobile application	IV	Analyzing
CO3	Design and develop responsive interfaces for web applications	VI	Creating
CO4	Create dynamic and responsive applications to work across both web and mobile platforms.	VI	Creating

Evaluate and apply cross-platform development techniques to build dynamic and responsive applications

List of Experiments / Lab Activities/Topics

List of Lab Assignments:

- 1. Installation of Android SDK, Emulator, Creating a Simple Project, and Understanding the Android Project Structure:
- 2. Design and implement various layouts, including a Login Form using both Linear and Relative Layouts.
- 3. Develop a program that explores Intents for navigating between activities, and design a Registration Activity along with its corresponding layout
- 4. Create and showcase UI elements such as Buttons, Text Fields, Checkboxes, Radio Buttons, and Toggle Buttons using Android SDK.
- 5. Develop a program to demonstrate the usage of Spinners, Touch Mode, Alerts, Popups, and Toasts, while handling their events appropriately.
- 6. Implement and showcase Touch Mode and Menus, while handling their respective events effectively.
- 7. Set Up a Web Development Environment and Create a Simple Web Page Using HTML, CSS, and JavaScript

- 8. Implement and demonstrate a responsive web layout using CSS and PHP
- 9. Create a Dynamic Web Page with Client-Side JavaScript and Fetch API to Display Data
- 10. Implement Navigation Menus, Modals, and Tooltips Using JavaScript and CSS

Textbooks

- Bill Phillips, Chris Stewart, and Kristin Marsicano, "Android Programming: The Big Nerd Ranch Guide", Big Nerd Ranch Guides, 7th Edition, 2023
- Noel Rappin, "Modern Front-End Development for Rails", Pragmatic Bookshelf, 2nd Edition, 2023

References

- Dawn Griffiths, David Griffiths, ""Head First Android Development: A Brain-Friendly Guide" O'Reilly Media, 2nd Edition, 2021
- Jon Duckett, "HTML and CSS: Design and Build Websites", Wiley, 3rd Edition, 2023

Useful Links 1 https://archive.nptel.ac.in/courses/106/106/106106156/

2 https://nptel.ac.in/courses/106106147

CO-PO Mapping

	Programme Outcomes (PO)										PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2			2							2	1	2
CO2		3	2		3					2		2	3	
CO3	1		3	3	1	2	3		3		2	1		2
CO4		2	1		3	1	2	2	3	3	2	2	2	

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing (min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any. Self-study content should be provided to students and assessed during the laboratory assessment (LA)